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<3 ABSTRACT

7

AJS The long time behavior of the solutions of nonlinear parabolic initial
iiia value problems on the line has been investigated by many authors. In

:;: particular they have shown, under certain assumptions, the existence of
'Tf‘ traveling waves to which a large class of initial data eventually evolves.

£

'?¢\ They have also proved that which traveling wave solution is picked out as the
Zi%: asymptotic state often depends on the behavior of the initial data at
A SN
=$= infinity. This causes difficulties for the numerical simulation of the long
4.- -\

.. time evolution of such problems. In particular, if an artificial boundary is
x-,u introduced, the boundary condition imposed there must depend on the initial
T .

:;ﬁ . data in the discarded region. In this work we derivesguch boundary
v::? conditions, based on the Laplace transform solution of the linearized problems

n . .oors
”’ at . We illustrate their utility by presenting a numerical solution of
AR Fisher's equation, a nonlinear parabolic equation with traveling wave
:&:: solutions which has been proposed as a model in genetics.
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A SIGNIFICANCE AND EXPLANATION

N Nonlinear partial differential equations of parabolic type arise in

o various applications. Examples include models of chemical kinetics and

- population dynamics. In many cases it is the evolution of the initial data

‘ into some simple final state which is of interest. For a class of initial
RN value problems on the line, other authors have shown that the final state is
_:i: usually a traveling wave and is determined by the initial data at infinity.
5

- In this work we present a method for the numerical simulation of this

ey evolution.

ene,

e As a finite domain is required for the numerical method, it is necessary
N

Py to introduce artificial boundaries. The boundary conditions imposed there

\ £

’k}f must depend on the initial data in the discarded regions if the correct long
-33: time solution is to be found. We construct such conditions using the Laplace
Y

\':-.'

W transform solution of the linearized problems at *®. Their utility is

o illustrated by the solution of Fisher's equation, a model of the spatial

A

R advance of an advantageous gene. It is hoped that this method will give

S, reliable results when applied to problems whose final state is not known
L~ .Y . .
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THE NUMERICAL CALCULATION OF TRAVELING WAVE SOLUTIONS
. OF NONLINEAR PARABOLIC EQUATIONS ON THE LINE

Thomas Hagstrom and H. B. Keller®*
’ 1 INTRODUCTION
We consider the numerical solution of the Cauchy problem for a class of nonlinear
parabolic equations;

a) u = flu,,u,u), *®<x<o t3>0;

b) lim u(x,t) = ¢,, lim uix,t) =¢_;

(1.1) x> xh=

) ulx,0) = ugix) ;
3
4) % £(a,b,c) > 1 for all a,b,c .

We asgsume that .t satisfy:

£(0,0,¢t) =0 ;
(1.2)

f“(°,0'0t) * 0 R
and that the initial data, ug(x), satisfies (1.1b). 1In particular, we are interested in
simulating the evolution of the initial data into traveling waves.
Hagan [3,4] has presented an extensive analysis of problem (1.1). We paraphrase some
of his results below:

(i) Nonmonotonic waves are unstable in general.

;

(11) The stability of monotonic waves of speed c¢ can, in general, be determined by

s _‘-':‘-’

an examination of their trajectories in the phase plane of:

L] .I.—‘.l

w' = v ;

[

(1.3)
f(v',v,w) + cv =0 .

el &
)

[N S

(1ii) 1If traveling waves exist, a large class of initial data satisfying (1.1b) will

v,
»
v

evolve to a traveling wave.

Na,
AR

3§
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(iv) 1In certain situations, infinitely many wavespeeds, c, are allowed. In this
case, the traveling wave which is eventually seen depends on the behavior of the initial
data at infinity.

The numerical solution of (1.1) requires a finite computational domain. Ome way to
obtain such a domain is to introduce artificial boundaries at the points
+ T, > T_, and impose boundary conditions there. The derivation of proper
boundary conditions is the main subject of this work. A general theory of boundary

x=71T

condition. at an artificial boundary is given by the authors in [(6]. This theory is not
directly applicable to time dependent problems in unbounded spatial domians such as
(1.1). However, a Laplace transformation in time yields a problem of the right form. 1In
section 2, conditions are derived for the transformed problem and inverted to yield
conditions in the real variables.

We note that use of the proper boundary conditions is crucial whenever (iv) holds.
Then, the “naive®” conditions:

wr,,t) =4, ,

(1.4)
u(t_,t) =4_ ,
must, in general, fail to lead to the correct long time solution.

In section 3 a specific problem of the form (1.1) is introduced: the Cauchy problem
for Fisher's equation. It has traveling wave solutions of all speeds ¢ » 2. Gazdag and
canosa [1] present a numerical solution of Fisher's equation using boundary conditions
analogous to (1.4). As predicted by the theory, their solution always evolved to the
traveling wave of minimum speed. Here we present calculations using the boundary
conditions derived in section 2. The numerical solution is seen to evolve to the correct
traveling wave for a variety of choices of initjial data.

We note that the method of deriving boundary conditions presented here can be applied
to other time dependent problems, including some problems of hyperbolic type. For other
examples the reader is referred to Gustafsson and Kreiss {2] and Hagstrom [5]).

The authors thank Prof. J. D. Murray for bringing this problem to their attention.
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2. CONSTRUCTION OF THE BOUNDARY CONDITIONS

We now construct boundary conditions at the right boundary, x > 1,. (The
construction at the left will be analogous.) Only the linearized problem in the tail is
considered and a coordinate system moving to the right with speed c is assumed;

a) vix,t) = ulx,t) -, x>71

b) Ve = £4Vue fov, + v, t Eav

(2.1)
) v(x,0) = ug(x) = ¢, 4

d) 1lim vix,t) =0 ;
x>

where the constants f; are given by:

af
(2.2) fz = 5(—‘1—)- (°I°l¢+) H

f3 =355 (0,0,¢+) .

Following the general ideas presented by the authors in [6], two problems must be
golved; boundary conditions for the homogeneous problem, (2.1b,d) combined with zero
initial data, must be found as well as a particular solution of (2.1b,d) which satisfies
(2.1c). The homogeneous problem is considered first.

Boundary Conditions for the Homogeneous Problem

We introduce the temporal Laplace transform:

- o
w(x,s) = ] e gtm(x,\:)dt .
0

If w 4is a solution of (2.1b,d) with zero initial data, then w satisfies:

-

+ + + -
f1mxx (f2 c)wx (f3 slw =0 ;

(2.3) -
lim w(x,s) = 0 .
b aad

.

Equation (2.3a) has the basic exponential solutions:

[

Sy
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a kt(s:c)x .
(2.4) W =e ’

where kt(',c) are given by:

-{f, + ¢)

2
(2.5) kt - 2F

1 2 1/2

4 % [(f2 +c) + 4f1(s f3)] ]
1 1
For real part of s sufficiently large, k, will have real part positive and k_ will
have real part negative. (Recall, £f4 > 1.) Hence, the admissible solution has exponent
k_. It satisfies:
(2.6) w (T, 18) = k_(s1c)ulT i8) ;
which can be rewritten;

~
T
wx( +8) -

k—_(_SIC_)_ - m(r+rs) .

1
Using the convolution formulas and the expression for the inverse transform of P (see,

e.g., Oberhettinger and Badii ([8]), (2.7) can be expressed in the real variables:

2
t [£,-a%](t-p) 2,
-/?: | e 3 ! - ae® (t P yeciart - P o (T, ,pldp = w(t ,¢) ;
0 /Tt - p) x
(2.8)
22 + c
a = —_—
2/f1

Particular Solution

We now find particular solutions, assuming that u; - ¢, can be expressed as a finite

sum of exponentials:

N -uj(x-r+)
uo(x)-¢+-2dje , @, >0, x>1_ .,
3=1

We note from Hagan's analysis (3] it is necessary in many cases that uy - ¢, decay at

oy

AN least exponentially if traveling wave solutions are to be found. From (2.5), with
':h
~ T
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s = 0, we see that traveling waves of speed c have exponential decay rates given by:

£, + ¢
2 2 1/2
(2.9) gt(c) 2f‘ t 2f1 [(f2 + c) 4f1f3] .

From (2.9) we see that given any exponent, -aj, there exists a unique speed 4 such

that:
(2.10) -uj = g_(cj) or -aj = g+(cj) .
It is given by:
f3
(2.11) c, =T+ fa, ~ £, .
3 1 2
3 3 b

Hence, each exponential can he associated with a unigue traveling wave solution, from

which a particular solution can be found:

N . T, =a,(x-(c.-c)t)
(2.12) volx,t) = § dedte ) .
p =1 3

Combining (2.8) and (2.12) yields the following linearized boundary condition for u

at x = T+:

2
__ t [f_-a](r-p) 2, . N a, (c.-clp
-/f1 | e 3 . ae® (t p)Erfc(a/t-p)](ux(T+,p) + l ujdje i3 )dp
0 /x(t-p) I=1
(2.13)
N a,{c,~c)t
= u(r,t) - ¢ - jz1 ae 3 ,
where
f2 +c
a) a= —
e,
(2.14)
N -aj(x-r+)
b) ug(x) =4, + 321 de ;x> T, .

Conditions at the left Boundary

A similar boundary condition can be derived at the left boundary, x= T_. 1In

transform variables, a solution to the linearized, homogeneocus problem on (==,7_] must

-5-
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satisfy: R
wx(T_is) N .
(2.15) = - w(r_ss) ,
k+(src) ;
i
where _ !
-(£, + ¢) .
- 2 - - -
(2.16) K, e —2—— - (v )+ af (s~ EN2. :
* 2f 2f, 2 1 3 |
1
:' We now have:
\"‘.
S
= 3f

]
)
|
1
17 300y (000 0 |
xx |
(2.17 Fo=2f 0,0 ;
«17) 2 = Ty (0.0.4) 1 !
x L]

L]

2 af
f3 - 5; (0'°l¢-) .

The inverse transform of (2.15) is given by: ‘

z _=2
— t (£,-a%](t-p) o2 e

Tt e 3 [ ! + 3e® (Plprgc(-art = p)]wx('l’_,p)dp =w(t_,t) ;

0 /n(t - p)
(2.18) -

- ftre

a = — . 4
e,

To find a particular solution we assume that

Mo oA (x-T)
v.a',(x)-O"y,dej , 6,>0, x€<T .
B 2 3 b -

Each exponent, aj' can be uniquely associated with a linear traveling wave of speed Ej

through equation (2.16) (with 8 = 0):

(2.19) G, =-f - ?15 -

’
Al
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leading to the particular solution:

_ -a,T_ alx+(c=c,)t)
(2.20) Vplxet) = 6_+

Combining (2.20) with (2.18) yields a linear boundary condition at Tt_, analogous to

(2.13);

a (c-;j)p

z =2
— t [f -a)(t-p) _z2, o M_
f1 e 3 [ ! + ae” (¢ p)Erfc(-a/t-p)](ux(r_,p) - 1 a.d.e 1 )dp
0 /¥ (t-p) j=1 33
(2.21) -
M a(c-c )t
= ul(r_,t) - ¢6_~- djej i,
=1
where -
£f_ +c
a) a= 2 H
(2.22) £,
. M aj(x-T_)
b) up(x) =¢_+ } dee . xS T_
=t

3. Application to Fisher's Equation

We now apply the results of preceding section to Fisher's equation:
a) u =y, +tull-u), x€ (==, t>0;

(3.1) b) lim u(x,t) = 0, 1lim u(x,t) = 1 ;
X0 *> =00

c) u(x,0) = ugix) .

Problem (3.1) has arisen as a model of the propagation of an advantageous gene. For a
discussion of this application see, for example, Moran [7]. It is a special case of (1.1)
and various statements concerning the behavior of its solution are consequences of Hagan's
{3] general analysis:

(1) There exist traveling wave solutions of all wavespeeds c¢ > 2.

7=
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(ii) All positive initial data, ug{x), decaying at least exponentially as x + =

evolves to a unique traveling wave.

(111) If uplx) ~ e-Bx as x * ® then the solution evolves to a wave of speed
c(B) given by:
2
1 +
) 8 . B <
(3.2) c(8) =
2 B> 1.

The linearized boundary conditions, (2.13) and (2.21), are easily specialized to this
problem. As in section 2, we introduce a coordinate system moving to the right with
speed ¢ and choose T and T_ as our artificial boundary locations. We agsume t

+

ug(x) can be represented as a finite sum of exponentials in the tails:

N -a.(x=-1,)
uo(x) = z dje ] * PoX 2T
3=1
(3.3)
M a.(x-T_)
uo(x) = ¥ djd J +1, x<T1_.
3=
The boundary conditions we impose are:
t (1= °—2-)(:-p) ﬁ(t—p) N (1+a°-a c)p
a) 'f e ‘4 [ ! - ; e4 Erfc(§ fz:;)](u (r_,p) + X ad.e 33 ]dp
p— x + . i3
0 /7(t-p) 3=1
N (1+u§-u,c)t
= ult,,t) - 2 dje ] ;
i=1
(3.4)
( cz) c2 ~2
t ~{1+ =—](t-p) —(t-p) - M _ _ (e +a.c-1)p
b) [ e 4 — s ; & Erfc(- ;Jt-p]](ux(t_,p) -Yade ? Jap
0 /1(t-p) j=1 77
M (@243 -1t
sult_,t) =1-§ de J 3 .
=1 3
-8-
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We note that, by (3.3), the true soluticn should evolve to a wave of speed <c(B) given by
(3.2) where
(3.5) B8 = min {a,} .

; J

]
In certain circumstances the particular terms in (3.4a) have a large exponential growth in
time. As this could be a source of error in a numerical computation, the integrals

involving them were done exactly. This allows us to rewrite the right boundary condition:

2 2
[+ C
t (1= 4—-)(t-p) 1 e TP .
- e ———-3e E!‘fC(E v/t—p)]ux(T+,p)dp
0 /n(t-p)
(3.4a’)
N
= ult,e) + | f£.(t),
=1
where
2
. . . [kJ + :— - 1]/2 Kyt 2
P A S + S ;
£ (e ajdj[2(1_kj) e Erec(s VE) + SR e ? Ectel/ (k, + - 1)t +hj(t)]
[ 0 = E + c_z + k -1
' % =2 a j
(3.6) hylt) =
2
C
z— + k, -1 th c c2
-2 1 = kj) e ' aJ =3 i kJ -1

k., =1+ u? -a.c .
J ] ]

We note that (3.4a') explicitly contains the different evolution of initial data with large
and small decay rates.

Presented below are the results of some numerical computations of solutions of (3.1)
using the boundary conditions (3.4a’,b). A uniform grid was introduced and spatial
derivatives were replaced by centered finite differences. The method was implicit in time
and stable for the ratio of the time step to the grid size sufficiently small. At each

step a nonlinear system of equations was solved using Newton's method with an explicit ste
p P

OISR s s

B R

)
o
“
F
:l
<
b
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taken to generate the initial guess. The boundaries were located midway between gridpoints

and the integrals there were approximated by the trapezoid rule (away from the
singularity). PFor all cases described below the grid ranged between =12 and 12 and
contained 171 points. The time step is .025, well within the stable region in all cases.
Initial conditions were generated in the following way: expansions in the tail, (3.3),
were input and smoothly connected (two continuous derivatives) by a combination of
polynomial and exponential functions. The computations shown were performed on a
VAX 11/780 at the University of Wisconsin at Madison, though others were done on the
IBM 4341 of the Applied Mathematics Department at the California Institute of Technology.
Figure t shows the evolution, in a coordinate system moving with speed 4, of initial
data which decays, at both 1%, at a rate compatible with a wave of speed 4. The initial
data and solutions at intervals of 25 time steps are displayed. A steady state is reached
which must be moving with speed 4. Figure 2 contains the final state (solid line) of
Figure 1. This is the solution at ¢t = 6.875. Plotted with it is a wave of speed 4 found
by a finite difference solution of the relevant steady problem. The agreement between the

two solutions is seen to be excellent.

C:= .£.000000
1.2r:]|111|1|11'j
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Y
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b " We note that the boundary condition,

¢ (3.7) u(1,,t) = constant ,

o
.
[lakY

LR AT. & B m. 8 & ssemwm. .

leads to good results when the speed of the coordinate system is the same as the speed of
the final state. For a more complicated problem, however, this might not be known in
advaice. Indeed, it might the goal of the computation to determine it. As shown in Figure
3, our conditions avoid this difficulty. This is the computed evolution in a coordiante
system moving with speed 3 of the same initial data used to generate Figure 1. The wave is
seen to move to the right and, in fact, moves with relative speed 1. This is confirmed in

Figure 4, a comparison of the solution at t = 6.875 (solid line) and the wave of speed 4

of Pigure 2 translated to the right a distance of 6.875. We believe the small error at the

.
»
-

2%

right boundary is due to the use of linearized boundary conditions.

)

Figure 5 displays the computed evolution of initial data with two decay rates in the

'l,
Co
RN
17278

right tail: one compatible with a wave of speed 4, the other compatible with a wave of

MENRL 4 A A A K & 2 SRS . 8. 8°8 A.A MWMRA & X & bor

o]

t: . speed 3. Here, the speed 4 part decayed at the large rate while the speed 3 part decayed
N

r{: at the slow rate. As predicted by the theory, a speed 3 wave is eventually reached.
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We note that, as it is the initial data in the right tail which determines the

wavespeed, it is the right boundary condition which is important. Various choices for the

0
L

.
s e

left boundary conditinn, for example u = constant and u, = 0, were tried and led to

. 0

good results.

e
« v

In susmary, we have shown that our boundary conditions consistently lead to correct

R Pra

long time results while other simpler conditions do not. We hope that their generalization
to more complicated problems, where the final state is not known a priori, will also give

. reliable results. It should be noted, however, that this has not been proved even in the

,

simple case described here.
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conditions, based on the Laplace transform solution of the linearized problems
at t®. We illustrate their utility by presenting a numerical solution of
Fisher's equation, a nonlinear parabolic equation with traveling wave

solutions which has been proposed as a model in genetics.
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